Enhanced Control for Local Helicity Injection on the Pegasus ST

C. Pierren,
M.W. Bongard, R.J. Fonck, B.T. Lewicki, J.M. Perry

59th Annual Meeting of the APS Division of Plasma Physics
26 October 2017
Milwaukee, WI
Enhanced Control for Local Helicity Injection on the Pegasus ST

<table>
<thead>
<tr>
<th>Background</th>
<th>Hardware</th>
<th>Splitter Combiner</th>
<th>Code Testing</th>
<th>Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegasus/LHI Overview</td>
<td>What’s an FPGA?</td>
<td>S/C Overview</td>
<td>Overview of FPGA Application Testing</td>
<td>Near-Term Work</td>
</tr>
<tr>
<td>Power Supply Overview</td>
<td>NI FPGA System Architecture</td>
<td>FPGA S/C Block Diagram</td>
<td>FPGA Noise Immunity Testing</td>
<td>Possible Near-Term Physics Studies</td>
</tr>
<tr>
<td>Present Control Systems Limitations</td>
<td>Hardware on Pegasus</td>
<td>I/O Requirements</td>
<td>Bridge Level Protection Logic Validated</td>
<td>Future Power System Control</td>
</tr>
<tr>
<td>FPGA Upgrade</td>
<td>Near-Term FPGA Implementation</td>
<td>State Filtering & State Diagram</td>
<td>FPGA S/C BenchTesting</td>
<td>Future FPGA Enabled Physics Studies</td>
</tr>
</tbody>
</table>

Background

- Pegasus/LHI Overview
- Power Supply Overview
- Present Control Systems Limitations
- FPGA Upgrade

Hardware

- What’s an FPGA?
- NI FPGA System Architecture
- Hardware on Pegasus
- Near-Term FPGA Implementation

Splitter Combiner

- S/C Overview
- FPGA S/C Block Diagram
- I/O Requirements
- State Filtering & State Diagram

Code Testing

- Overview of FPGA Application Testing
- FPGA Noise Immunity Testing
- Bridge Level Protection Logic Validated
- FPGA S/C BenchTesting

Future Work

- Near-Term Work
- Possible Near-Term Physics Studies
- Future Power System Control
- Future FPGA Enabled Physics Studies

Power Supply

- Overview of Power Supply Testing

Future Work

- Possible Future Work
- Future FPGA Enabled Physics Studies

Panel size: 8’ x 4’
Local Helicity Injection (LHI) Provides Robust Non-Solenoidal Startup on the PEGASUS ST

Plasma Parameters
- $I_p \leq 0.23$ MA
- $\tau_{\text{shot}} \leq 0.025$ s
- $B_T = 0.15$ T
- $A = 1.15$–1.3
- $R = 0.2$–0.45 m
- $a \leq 0.4$ m
- $\kappa = 1.4$–3.7

Injector Parameters
- $\sum I_{\text{inj}} \leq 14$ kA
- $I_{\text{inj}} \leq 4$ kA
- $V_{\text{inj}} \leq 2.5$ kV
- $N_{\text{inj}} \leq 4$
- $A_{\text{inj}} = 2$–4 cm²
- $I_{\text{arc}} \leq 4$ kA
- $V_{\text{arc}} \leq 0.5$ kV

C. Pierren, APS-DPP, 2017
Pegasus Driven by ~ 250 MVA Modular Power System

- Drive wide range of loads
- 35 optically isolated H-Bridges
 - 12 IGCT
 - 23 IGBT
- Analog feedback control
- Control signals multiplexed to N bridges
 - ‘Splitter-Combiner’ (S/C)

<table>
<thead>
<tr>
<th>Load Types</th>
<th>Operating Voltage</th>
<th>I_{max} [kA]</th>
<th>Controlled Power [MVA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toroidal Field (TF)</td>
<td>900</td>
<td>24</td>
<td>21.6</td>
</tr>
<tr>
<td>Poloidal Field (PF) (x3)</td>
<td>900</td>
<td>16</td>
<td>14.4</td>
</tr>
<tr>
<td>Radial Coil</td>
<td>900</td>
<td>4</td>
<td>3.6</td>
</tr>
<tr>
<td>Divertor Coil</td>
<td>900</td>
<td>4</td>
<td>3.6</td>
</tr>
<tr>
<td>Ohmic Solenoid</td>
<td>2200</td>
<td>32</td>
<td>70.4</td>
</tr>
<tr>
<td>Injector Arc (x4)</td>
<td>900</td>
<td>4</td>
<td>3.6</td>
</tr>
<tr>
<td>Injector Bias (x2)</td>
<td>2200</td>
<td>12</td>
<td>26.4</td>
</tr>
</tbody>
</table>

C. Pierren, APS-DPP, 2017
Next Generation LHI Enabled by Planned Power Supply and Control System Upgrades

- FPGA ‘Splitter-Combiner’
 - Expands number of simultaneously controllable bridges
 - Improve IGCT Protections

- Ćuk Converter Power Supply for Injector Arc & Bias
 - Low ripple programmable voltage control

- FPGA Digital Feedback Controllers
 - Programmable coil set and helicity injection control

- Increase TF (H-Bridge)
 - Increased Taylor Limit, confinement studies

- Expand PF (H-Bridge)
 - Improved position and shaping control

Ćuk Converter (Planned)

H-Bridge Topology (1 of 35)

C. Pierren, APS-DPP, 2017
FPGA Digital Splitter-Combiner (S/C) and Feedback Controller Expand Pegasus Control Capabilities

Benefits of FPGA:
- Programmable control algorithms
- Expandable with off-the-shelf hardware
- Improved EMI resilience
- Increased stability (e.g. no comparator drift)

S/C Improvements:
- Additional device-level protections
- Reduced fault response time
- Continuous fault monitoring

C. Pierren, APS-DPP, 2017
Field Programmable Gate Array (FPGA) Technology Overview

- “Programmable hardware” via low-level logic descriptor languages (VHDL) or high-level (LabVIEW FPGA)

- Input / output interfaces
 - Analog and Digital I/O

- Clocks / timers
 - 10, 40 MHz fundamental

- Direct Memory Access (DMA) interfaces
 - FPGA↔Realtime PC data exchange

- PCI, PXI bus interfaces
 - Inter-FPGA signaling, data exchange, timing

FPGA Resource Types

Source: NI.com, Introduction to LabVIEW Real-Time and FPGA

C. Pierren, APS-DPP, 2017
National Instruments Labview FPGA Platform Provides Flexible Control System Architecture

- **Software Hierarchy**
 - LabVIEW
 - General-purpose language, no timing guarantees
 - LabVIEW Real-time
 - ~100s kHz – class timing guarantees
 - Can act as data processor and pass-through for FPGAs
 - LabVIEW FPGA bit file

- **Hardware Hierarchy**
 - Windows PC
 - Real-time PXI controller
 - Real-time OS, embedded hardware control interfaces
 - FPGA Modules
 - Plant I/O Interface

- **Applications can have varying levels of complexity**
 - FPGA only
 - Multiple FPGAs (and PXI intra-FPGA signaling)
 - FPGA(s) + RT host
 - FPGA(s) + RT host(s) + Windows host

C. Pierren, APS-DPP, 2017
FPGA Hardware Employed for Pegasus System

- **NI PXI 7852R “Hybrid” FPGA (x2)**
 - 8 AI, 8 AO
 - 96 DIO

- **NI PXI 7813R “Digital” FPGA (x1)**
 - 160 DIO channels

- **PXIe-1062Q Crate (x2)**
 - Houses embedded controller (PXIe-8133 / PXIe-8135) and FPGA units
 - Real-time LabVIEW control capability
 - TCP/IP remote control capability

- **Electro Standards Laboratory (ESL) Custom TTL↔Optical Transceiver (x7)**
 - Convert 20 TTL I/O pairs to 20 Optical TX/RX pairs
 - Optical signaling compatible with IGBTs & IGCTs

C. Pierren, APS-DPP, 2017
FPGA Splitter-Combiner Chosen as First Application

- Addresses technical requirements for many applications:
 - Fundamental for planned upgrades

- Improvements enabled by FPGA S/C:
 - Continuous fault monitoring
 - Improved fault response time
 - More robust device protection
 - Increased number of controllable bridges

C. Pierren, APS-DPP, 2017
FPGA Splitter/Combiner Improves Device-Level Protections

• Splitter Functionality Retained:
 – Multiplexing of command signals to N bridges

• Combiner Functionality Retained:
 – Device-level interpretation of IGBT/IGCT status signal
 – Aggregation of bridge status signals to single assertion of “Coil Set OK”
 – Fault assertion for SCRAM system
 – Identification of faulted device

• FPGA Enabled Improvements:
 – Continuous monitoring of device status
 – Protection from invalid PWM commands (state filter)
 – Improved fault response time (25-100 ns)
FPGA Splitter-Combiner Block Diagram

Note: all blocks operate asynchronously

C. Pierren, APS-DPP, 2017
Input/Output Requirements Satisfied by Multi-FPGA System

Present Power Supply Configuration

<table>
<thead>
<tr>
<th>Load</th>
<th>Typ. V</th>
<th>I_{max} [kA]</th>
<th># of Bridges</th>
<th>Bridge Type</th>
<th>Power S [MVA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF</td>
<td>900</td>
<td>24</td>
<td>6</td>
<td>2Q</td>
<td>21.6</td>
</tr>
<tr>
<td>PF 23</td>
<td>900</td>
<td>16</td>
<td>4</td>
<td>2Q</td>
<td>14.4</td>
</tr>
<tr>
<td>PF 67</td>
<td>900</td>
<td>16</td>
<td>4</td>
<td>2Q</td>
<td>14.4</td>
</tr>
<tr>
<td>PF 45</td>
<td>900</td>
<td>8</td>
<td>2</td>
<td>4Q</td>
<td>7.2</td>
</tr>
<tr>
<td>Radial Coil</td>
<td>900</td>
<td>4</td>
<td>1</td>
<td>2Q</td>
<td>3.6</td>
</tr>
<tr>
<td>Divertor Coil</td>
<td>900</td>
<td>4</td>
<td>1</td>
<td>2Q</td>
<td>3.6</td>
</tr>
<tr>
<td>Ohmic Solenoid</td>
<td>2200</td>
<td>32</td>
<td>8</td>
<td>4Q</td>
<td>70.4</td>
</tr>
<tr>
<td>Injector Arc</td>
<td>900</td>
<td>4</td>
<td>1</td>
<td>4Q</td>
<td>3.6</td>
</tr>
<tr>
<td>Injector Bias</td>
<td>2200</td>
<td>12</td>
<td>3</td>
<td>1Q</td>
<td>26.4</td>
</tr>
</tbody>
</table>

- 3 FPGAs meet I/O needs
- Intra-FPGA communicates via fast PXI bus

<table>
<thead>
<tr>
<th>Optical In</th>
<th>Optical Out</th>
<th>DIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status IN</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>PWM Commands</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Command OUT</td>
<td>-</td>
<td>93</td>
</tr>
<tr>
<td>Aggregate Fault</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>SCRAM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
<td>105</td>
</tr>
<tr>
<td>AVAILABLE</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

C. Pierren, APS-DPP, 2017
FPGA Enabled State Filtering Increases Device-Level Protections

Configuration of 4Q Bridge in State A

- State navigation controlled by PWM
- S/C filters PWM commands; only valid commands sent to bridges
- Enforces minimum dwell times during operation & fault handling

C. Pierren, APS-DPP, 2017
Functionality of Custom Electro Standards Laboratory (ESL) Transceivers Verified

- Critical for optical interfacing
- FPGA used to verify ESL Transceiver
 - Test waveforms, clock / pulse generators, etc.
 - 23 VIs developed for transceiver interfacing
 - Interface library also applied to S/C
- Result: Pegasus requirements satisfied

C. Pierren, APS-DPP, 2017

<table>
<thead>
<tr>
<th>Spec Verified</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical I/O Mapping</td>
<td>TTL ↔ Optical TX/RX</td>
</tr>
<tr>
<td>Optical Power</td>
<td>Signal above threshold</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Verify data bit rate 10Mbps</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>Quantify susceptibility (none)</td>
</tr>
<tr>
<td>Noise susceptibility</td>
<td>Test EMI resilience (robust)</td>
</tr>
</tbody>
</table>

Pinout Verification VI: TX State Toggled by User

Seven ESL 6760 Units Under Test
Noise Immunity Testing Indicates Optical Interface Improves EMI Resilience

- FPGA system deployed in same environment as present control system
 - Monitored for noise induced state changes every 25 ns

- Tested during operational period with uncharacteristically high levels of noise
 - Present system experienced 4 faults that halted operations
 - FPGA system did not fault: robust to this environment

- Noise resilience should improve reliability and increase run time
State Detection and Transition Filter Logic Verified with Custom Labview FPGA Test Platform

- Core logic implemented:
 - Detect current state of H-bridge
 - Filter states; only valid states, transitions sent to bridges

- Tested with external test platform:
 - Challenged all possible states
 - Challenged all possible state transitions
 - Recorded inferred states and transition validities
 - Compared to design specifications

- Implementation passed hardware proof

C. Pierren, APS-DPP, 2017
FPGA S/C Functionality to be Verified by Full System Testing Platform Before Deployment

- Created test platform to source arbitrary optical signals:
 - FPGA Target generates user programmed ‘PWM’ and ‘Status’ signals for FPGA Under Test
 - Real Time Host interfaces between User and FPGA Target
 - Target monitors PXI Bus for challenge induced faults
 - Challenge results reported to user

- Mechanics of test bench verified:
 - Proof of concept test
 - Enables automation of S/C testing

- Challenge sequences to verify S/C fault response:
 - IGBT & IGCT status faults
 - Invalid state encoding
 - Invalid state transition command
 - Insufficient state dwell time
 - Valid transit of state diagram → No fault

C. Pierren, APS-DPP, 2017
Development & Deployment Plan for Power Supply & Control System Upgrades

Near-Term

- **FPGA Splitter/Combiner**
 - Expands control channels; TF upgrade
 - IGCT protection

- **Ćuk converter for injector Arc and Bias supplies**
 - Low ripple voltage control

- **FPGA digital PWM**
 - Programmable coil & LHI control
 - Advanced control algorithms

Proposed

- **DNB power supply & control**
- **RF/EBW power supply & control**
- **FPGA replacement of CAMAC timing modules**
Physics Studies Enabled by Planned & Proposed Upgrades

• Helicity Injection Control:
 – Helicity drive scans
 – Potential for tandem operation of low-field and high-field side helicity injection

• Increased TF:
 – Explore higher TF operating space relevant to start-up on larger machines
 – Increased Taylor limit studies

• PF Expansion:
 – Improved vertical position control
 – Better coupling to helicity injectors

• OH Operations:
 – Impurity studies
 – Taylor limit studies
 – LHI to OH handoff

• DNB Control:

• RF/EBW Control:
 – Electron heating
 – Current drive
• FPGAs improve control and support expansion of Pegasus power supply
 – Commercial off-the-shelf hardware and software

• FPGA S/C system designed as first application
 – Protects all power supplies and enables expansion
 – Improves fault response and monitoring
 – Improves device-level protections

• Hardware & design verification in progress prior to powered testing

• Next steps:
 – Ćuk power supplies: Injector Arc & Bias
 – FPGA Digital Control
 – DNB, RF/EBW power supply
Pegasus Power Systems
FPGA Hardware Provides Flexible Control
Hardware & Software Verification
Planned Upgrades to Control System & Power Supplies
Reprints of this and other PEGASUS presentations are available online at

http://pegasus.ep.wisc.edu/Technical_Reports