PLASMA STUDIES AT HIGH NORMALIZED CURRENT IN THE PEGASUS EXPERIMENT

Raymond J. Fonck
University of Wisconsin-Madison

for the PEGASUS team:
D. Battaglia
M. Bongard
S. Burke
N. Eideitis
G. Garstka
M. Kozar
B. Lewicki
E. Unterberg

presented to the
46th Annual Meeting
of the APS Division of Plasma Physics
Savannah, GA
Nov. 15-19, 2004
Explore plasma limits as $A = 1$

Pegasus is an extremely low-aspect ratio facility exploring quasi-spherical high-pressure plasmas with the goal of minimizing the central column while maintaining good confinement and stability.

Primary Pegasus Goals:

• Stability and confinement at high I_p/I_{TF}
 - Extension of tokamak-like studies

• Limits on τ and $I_N \sim 6I_p/I_{TF}$ (kink) as $A = 1$
 - Overlap between the tokamak and the spheromak

Planned Future Emphases:

• Support ST program movement to next stages
 - Noninductive startup tests
 - EBW tests for heating & CD (w/PPPL)
 - Novel divertor design tests (w/UT)
Phase I demonstrated low-A characteristics

- $A \sim 1.1$ via OH
 - High field/stress solenoid
 - Very low TF (< 0.1 T)
 - HHFW available

- Low field, ohmic only
 - high I_N & t

- Resonant L-C power systems
 - Fixed waveform evolution
 - Low I_I, low shear

n_e up to density limit

Measured low-shear $q(r)$
Phase I: An $I_p/I_{TF} \approx 1$ soft limit observed

Large resistive MHD instabilities as TF

- low B_t and fast dI_p/dt early appearance of low-order $q=m/n$ at low T_e
- ultra-low A, low l_i low central shear

Rapid growth of 2/1, 3/2 tearing modes and large saturated island widths

- $I_p/I_{TF} \approx 1$ $q_0 \approx 1.5 - 2$
- plus reduction of V-sec as TF

$\rho_N \approx 6 I_p/I_{TF}$
Phase II: PEGASUS Facility has been Completely Rebuilt

- **New Tools Enhance Study of Plasma Stability Boundaries**
 - All coil power systems upgraded to programmable waveform control
 - Active shaping and position programming
 - **Increased V-sec** (2 - 2.5x) and control
 - Low inductance, higher B_T (3x) Toroidal Field bundle for rapid TF ramp
 - Divertor coils for separatrix operation
 - **Plasma Guns** for plasma startup and current drive

46th APS/DPP Nov., 2004 - rjf
Power systems offer path to high I_p/I_{tf} operation

- Suppress tearing modes early in discharge evolution
 - Transiently manipulate q during discharge:
 - Increased TF at startup
 - Variable I_p and R_0
 - Reduce resistivity before low-order rationally appear
 - Maximize J
 - Increase ohmic flux
 - Use HHFW system
- Explore edge kink boundary at high field utilization
 - Manipulate edge shear
 - Decrease edge currents
 - Manipulate plasma shape
 - Manipulate current profile
- Begin operations with reduced OH power
 - 900V IGBT H-bridges for low-power OH (120 MVA)
 - Near-future: 2700V IGCT bridges for full OH ops (130 MVA)
Phase II: Earlier Results Recovered; Extending Operation Space

- Comparable characteristics to Phase I plasma achieved
 - I_p ramp rate, maximum I_p

- Mode activity: similar qualities
 - frequency, B

- Initial tests to lower I_p ramp-rate
 - Envelop function of Mirnov signal decreases with decreased dI_p/dt
New Capability Widens Operating Space

• Higher TF allows extension of operation space

• Limited OH flux and control during shakedown
 - 2/1 mode still evident with high dI_p/dt
 - Full OH will allow challenge to high I_N, I_p/I_{TF}
Present Status - Integrating New Capabilities towards $I_p/I_{tf} > 1$

• Summer-Fall ‘04: Shakedown & Commissioning
 - 1st plasma in late May
 - Shakedown campaign
 • Transient suppression and PS stabilization
 • New facility tests and systems shakedown
 • Effects of wall currents with new waveforms
 • Low power startup studies
 • Phase I operation space recovered
 - New power systems stabilized and working as desired
 • Robust to major failures

• Recent upgrades to enhance operations
 - New diagnostics
 - Plasma guns installed for tests of CD and fueling
 - $V_f(t)$ control -> dI_p/dt control

• Fall ‘04: Installation of first High-V OH power supplies

• Campaign in Winter 2004-2005: Use New Tools
 - Commission new OH system for high-power ops
 - Access to $I_p/I_{tf} > 1$, low-q, high I_N, high I_e regime
 - Introduce separatrix
 - Tearing mode suppression
 - Characterize ext kink limits
 - Use gun for startup assist
Plasma Guns Being Tested for Startup and Fueling

- Use MST-style gun current sources to inject helical current in divertor region
 - $I_{\text{gun}} \approx 300 - 600\, \text{A}$, $N_e \sim 10^{20}\, \text{m}^{-3}$
- Vary TF, EF fields to control current path
- Diverse potential applications
 - Ionized plasma fueling source in SOL
 - Ease OH V-sec needs
 - Provide PF-only startup path
 - Non-inductive startup path

Gun installed in lower divertor region
Current Filaments Merge Above Threshold

- Current amplification up to ~ 20
- Clear merging or reconnection(?) above a threshold in power
- Closed flux surfaces requires field, gun optimization

SN 24434 Vbias = 50 V
Low current
=> Filaments Maintained
No amplification

SN 24438 Vbias = 400 V
High current
=> Filaments Merge
Net amplification
Gun Startup Compatible with OH or EF Inductive Drive

- I scales linearly with # of guns
- Vloop added to gun plasma
 - *No preionization or null required*
 - *via OH or dEF/dt*
- I ~ 60 kA (OH) and ~ 20 kA (EF)
- Closed flux surfaces next target
 - Optimize field, Igun evolution
 - ~ 2x increase needed (?)

Guns + dEF/dt

- Toroidal Current [A]
 - Shot 25731
 - Shot 25752

- EF Coil Current [A]
 - 0 to 12,000

Guns + dOH/dt

- Plasma Current [A]
 - 1 Loop Volt OH
 - 2 Loop Volt OH
 - 2 Loop Volt, Highest Ip

- Time [s]
 - 0 to 20

46th APS/DPP Nov., 2004 - rjf
Economical Tests of EBW Possible on PEGASUS

EBW heating and current drive of interest for ST regime
- Plasma startup, sustainment
- Applicable to low-field, overdense plasmas
- Of interest to future NSTX development

Basic principles tested on W-7S and CDX
- Need to be tested at significant power levels

Pegasus good candidate for EBW development
- Low-cost 2.45 GHz technology
- Klystrons and waveguide available from PLT
- Need to demonstrate good target plasma control

Working with PPPL to develop best approach
- Modeling
- Hardware
- Experiments

(a) EBW ray tracing calculations for a 250 kA PEGASUS equilibrium, central density of ne(0) = 10^{13} \text{ cm}^{-3}. (b) n_{||} along the ray path, showing the upshift depends upon launch position. (c) Power deposition profiles corresponding to the rays in (a) and (b).
SUMMARY

• Phase I ops up to Spring 2002
 - \(\frac{I_p}{I_{tf}} = 1.1 \)
 - \(t \leq 25\% \)
 - Factors found limiting plasma current:
 + internal resistive modes
 + V-s limitations
 + external kinks

• Facility completely rebuilt and upgraded to provide increased plasma control
 - New switching power supplies (final OH installation now)
 - New divertor and shaping PF coils
 - New TF centerstack
 - etc.

• Phase II experiments have begun
 - Switching systems and infrastructure debugged
 - Low power OH demonstrating increased control
 • Phase I results readily reproduced
 • Fine control of OH, TF, and PF fields being established
 • Modest feedback control developing
 - Plasma gun tests suggest non-OH startup capabilities
 - High power operations to challenge low-q, high-\(A \) \(\rightarrow 1 \)
PEGSUS Poster Session: Thursday Afternoon

PP1.015 Stability Studies [Unterberg]
PP1.016 Diagnostic Measurements [Kozar]
PP1.018 Control & DAS Systems [Burke]
PP1.019 Facility and Power Systems [Lewicki]
PP1.020 Plasma Gun Experiments [Eidietis]
PP1.021 Potential EBW Experiments [Garstka]

Related - Weds morning:

HP1.074 NIMROD MHD modelling [Sovinec]
Low Current/Power --> Linear Scaling; Filament Maintained

- Current channel follows field line
 - Maintains helical nature

- Total toroidal current ~ 5 x gun current
 - $I_p/I_g \approx constant$

![Graph showing current and time relationships](image)
High Current/Power --> Nonlinear Scaling; Filaments Merge

- Current channels merge/reconnect
 - Generates extended plasma
- Total toroidal current > 5 x gun current
 - I_p/I_g increases

![Graph showing current and amplification over time](image_url)