H-mode and Edge Physics on the PEGASUS ST: Progress and Future Directions

M.W. Bongard

57th Annual Meeting of the APS
Division of Plasma Physics

Savannah, GA
November 18, 2015
H-mode Readily Accessed in A ~ 1 PEGASUS ST

- Low B_T at $A \sim 1 \rightarrow$ low H-mode P_{LH}
 - $P_{OH} >> P_{ITPA08} \sim B_T^{0.8} n_e^{0.72} S^{0.94}$
 - Limited or diverted topology
 - Facilitated by HFS fueling

- Standard H-mode features observed
 - Quiescent edge, improved τ_E, ELMs

PEGASUS Toroidal Experiment

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>1.15 – 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (m)</td>
<td>0.2 – 0.45</td>
<td></td>
</tr>
<tr>
<td>I_p (MA)</td>
<td>\leq 0.25</td>
<td></td>
</tr>
<tr>
<td>B_T (T)</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>$\Delta \tau_{shot}$ (s)</td>
<td>≤ 0.025</td>
<td></td>
</tr>
<tr>
<td>Wall Type</td>
<td>SS + Ti getter</td>
<td></td>
</tr>
</tbody>
</table>
Edge Pedestals Present Between ELMs in H-mode

- Short pulse, low edge T_e permit detailed edge measurements
 - $J_\phi(R,t)$ via multichannel Hall probe1,2
 - High spatial, temporal resolution
 - $p(R)$ via triple Langmuir probe
 - Single point, high temporal resolution

- Clear current pedestal observed
 - $L \rightarrow H$ scale lengths: 4 \rightarrow 2 cm

- Multi-shot Langmuir probe scans indicate pressure pedestal
 - Some edge distortion present from MHD

1 Bongard et al., Rev. Sci. Instrum. 81, 10E105 (2010)
Energy Confinement Improves in H-mode

- Equilibrium reconstructions yield τ_E

 $$\tau_E = \frac{W_K}{P_{in} - dW/dt - P_{rad}}$$

 - Challenges: short pulse, MHD, $I_{wall}(t)$
 - Significant dW/dt

- $W_k (\tau_E)$ increases after L-H transition

- H_{98} increases from 0.5 to 1.0

- Virial analysis ongoing for τ_E database

M.W. Bongard, APS-DPP 2015
• Vary P_{OH} with power scan
 – Transition time from ϕ_D bifurcation
 – Wide parameter range
 • $P_{OH} = 0.1 - 0.6$ MW
 • $n_e = 0.5 - 4 \times 10^{19}$ m$^{-3}$
 • Inner wall limited
 • Diverted: USN (favorable ∇B)

• $P_{LH,\text{exp}} = P_{OH} - dW/dt$
 – dW/dt from magnetic reconstructions
 – $\sim 30\%$ correction
P_{LH} Consistent with Global Scalings—But Low-A Differences Arising

- $P_{\text{LH}}(n_e)$ consistent with ITPA scaling
 - FM3 model1: minimum $P_{\text{LH}}(n_e) \sim 1 \times 10^{18}$ m$^{-3}$

- Magnetic topology independence
 - Diverted, limited edge topology similar
 - FM3: $P_{\text{LH}}^{\text{LIM}} / P_{\text{LH}}^{\text{DIV}} \sim (q_{\psi}^{\text{LIM}} / q_{\psi}^{\text{DIV}})^{-7/9}$

1 Fundamenski et al., Nucl. Fusion 52, 062003 (2012)
At Low A, $P_{\text{LH}} \gg P_{\text{ITPA08}}$

- P_{LH} increasingly diverges from expectations as $A \rightarrow 1$
 - PEGASUS $P_{\text{LH}} / P_{\text{ITPA08}} \geq 10$–20
 - Confirms trend from NSTX, MAST

- Discrepancy may hint at additional physics

Multi-Machine $P_{\text{LH}} / P_{\text{ITPA08}}$ Comparison

1 Maingi et al., Nucl. Fusion 50, 064010 (2010)
• Filament structures accompany ELMs

• Small ("Type III") ELMs ubiquitous, less perturbing
 – $P_{OH} \sim P_{LH}$
 – Low n

• Large ("Type I") ELMs infrequent, violent
 – $P_{OH} \gg P_{LH}$
 – Intermediate n

• ELM magnetic structure varies with A
 – Type III: A-dependent
 • Pegasus, NSTX: $n \leq 4$
 • $A \sim 3$: $n > 8$
 – Type I: A independent, but ST’s report lower n in range
 – Strong peeling drive in ST \rightarrow lower n
Details of Nonlinear ELM Behavior Emerging

- Simultaneously unstable toroidal modes present during ELM
 - Detectable only within ~ cm of LCFS
 - Nonlinear energy exchange

- Complex, multimodal $J_{\text{edge}}(R, t)$ collapse
 - High $\Delta t \sim 6 \mu s$ through single large ELM
 - Current filament ejection

- **Challenge:** studies of nonlinear ELM dynamics at Alfvénic timescales
Results Motivate PEGASUS-U Upgrade Proposal

- **Centerstack upgrade: new capabilities at \(A \approx 1.2 \)**
 - \(B_T \) increases \(2-5 \times \)
 - Pulse length \(\approx 100 \) ms
 - \(V\)-s increases by \(> 4 \times \) (PPPL collaboration)

- **Focused Physics Mission**
 - Nonlinear pedestal and ELM studies
 - Simultaneous measurement of \(p(R,t), J(R,t), v_\phi(R,t) \)
 - New edge diagnostics (probe arrays, DNB)
 - ELM Modification and Mitigation
 - Novel 3D-MP coil array
 - LHI current injectors in divertor, LFS regions
 - Physics of Local Helicity Injection Startup
 - High \(I_p \), long-pulse startup
 - Projections to NSTX-U
Unique Studies of H-mode Physics at $A \sim 1$

- H-mode plasmas with pedestal diagnostic access
 - Standard characteristics: pedestal; low D_α; increased τ_e; $H_{98} \sim 1$

- Low-A P_{LH} features emerging
 - P_{LH} threshold strongly increases as $A \to 1$
 - Insensitivity to magnetic topology

- Operating regime allows detailed ELM studies
 - Nonlinear ELM dynamics on Alfvénic timescales

- PEGASUS-U addresses critical physics, technology issues
 - Nonlinear ELM, pedestal physics with local edge diagnostics
 - Comprehensive 3D-MP and J_{edge} injection for ELM control
 - Tests of LHI at NSTX-U relevant field, pulse length

Supporting Posters This Meeting
R.J. Fonck, GP 12.00114
K.E. Thome, GP 12.00115
D.M. Kriete, GP 12.00120