Low-\(f \) MHD and Reconnection Activity During Local Helicity Injection

J.L. Barr, M.W. Bongard, M. G. Burke, R.J. Fonck, J.A. Reusch, N.J. Richner

58th APS DPP Annual Meeting
October 31st - November 4th 2016
San Jose, CA
LHI MHD and Reconnection

- **LHI exhibits large Alfvénic, n=1 MHD activity**
 - Both continuous and bursting behavior
 - Structure consistent with kinking of injected current streams

- **NIMROD simulations predict under-lying current drive mechanism of LHI**
 - Current drive via periodic large-scale reconnection events
 - Many points of qualitative agreement with experiment

- **Injector stream-to-stream reconnection drives anomalous ion heating in LHI**
 - Both co-injected streams and adjacent windings of individual streams
 - Observed as soon as injection begins
LHI Provides Robust Non-Solenoidal Startup on the PEGASUS ST

- Non-solenoidal ST Startup
 - Local Helicity Injection
- Tokamak Physics at $A \geq 1.15$
 - H-mode access, high β

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.15 – 1.3</td>
</tr>
<tr>
<td>$R(m)$</td>
<td>0.2 – 0.45</td>
</tr>
<tr>
<td>I_p (MA)</td>
<td>≤ 0.21</td>
</tr>
<tr>
<td>$B_{t,0}$ (T)</td>
<td>0.1-0.2</td>
</tr>
<tr>
<td>τ_{shot} (s)</td>
<td>≤ 0.025</td>
</tr>
</tbody>
</table>

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
LHI Injects Current, Helicity to Form and Drive Tokamak-like Plasmas

Unstable injected current streams
Reconnect, relax to Tokamak-like state
Subsequent OH-Driven Tokamak

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
NIMROD Identifies Current Stream Reconnection as a Current Drive Source

- NIMROD: Single divertor injector, no inductive drive

1. Streams follow field lines
2. Adjacent passes attract
3. Reconnection pinches off current rings

- Repeated events build current, poloidal flux
- After LHI off: flux-surfaces heal to Tokamak plasma

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
Low-\(f, \ n=1 \) Activity in LHI
Large n=1 Magnetic Fluctuations

- Large n=1 activity ubiquitous in LFS LHI discharges
 - Often begins continuous, transitions to bursting behavior
 - $15 \text{ kHz} \leq f \leq 70 \text{ kHz}$
 - $\delta b/B_t \sim 1\% - 5\%$

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
NIMROD Predicts Current Stream Motion, Reconnection Source of Magnetic Activity

- **NIMROD reconnection events:**
 - Provide current drive
 - Source of Alfvénic MHD phenomena

- **Qualitative agreement with experiment:**
 - n=1 > n=2-10 combined
 - Similar frequencies: 5-20 kHz
 - Jumps in toroidal current

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
Bursting n=1 Activity Coincides with Discrete n=0 Component

- Magnetic spectra includes:
 - n=1 during LHI
 - n=0 plasma motion, growth

- Bursting behavior:
 - Discrete n=0 inward motion

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
N=1 is Mode Spatially Localized to the LFS

- **LFS magnetics:**
 - Predominantly n=1 activity

- **HFS magnetics:**
 - Predominantly n=0 plasma motion, growth

LFS

- Frequency [kHz]
 - n=0
 - n=1
 - 1st n=1 Harmonic

HFS

- Frequency [kHz]
 - n=0
 - n=1
 - 1st n=1 Harmonic

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
n=1 Source: Unstable Injected Current Streams
n=1 MHD Activity is Localized Near the Injector Radius

- Local B_z measurements:
 - Radial localization of n=1 activity
 - Measured with Hall Sensor array probe

- The n=1 mode auto-power peaked at injector radius
 - Repeated discharges
 - During bursting phase
The $n=1$ mode amplitude is toroidally asymmetric

- Smallest near the injector face

Toroidal asymmetry follows changes to injector location

Line-tied kink-like structure

- Node at injector radius

Injected current streams are strongly kink unstable

- $I_{\text{inj}} = 2-3$ kA, $A_{\text{inj}} = 2$ cm2

See:

LFS Poloidal Magnetic Signals are Consistent with Oscillating Stream Source

- Reduced model of oscillating filament source with I_{inj}
 - Closely recreates measured LFS B_z phase, amplitude
 - Best fit location: R=59 cm, Z=13 cm
n=1 Activity in LHI is a Product of Injected Current Stream Motion

• Current stream oscillations = source of magnetic phenomena
 – Bursting behavior, spectra, amplitudes similar to simulation
 – Localization to LFS near injector radius

• Outstanding issues:
 – Relative fraction of n=1 activity from stream motion vs. Alfvén waves
 – Is the NIMROD predicted reconnection mechanism and induction sufficient to explain current buildup in experiment?
Anomalous Ion Heating
During LHI Current Drive $T_i > T_e$

- $T_i \geq T_e \sim 100$ eV
- $T_{i,LHI} > 10 \times T_{i,OH}$
- $T_{i,LHI}$ as large as 650 eV
- Large amplitude MHD associated with magnetic reconnection
- $T_{i,\perp}$ increase agrees with reconnection theory
$T_i(R_{tan})$ Indicates Edge Localized Heating, Consistent with Filament Location

- $O_V T_i$ largest early in the discharge, but sustained over several confinement times.
- Edge $O_V T_i$ peaking goes away after injector shutoff.
- LHI Core $T_i > 100$ eV, substantially larger than core $O_V T_i$ in ohmic.

![Graph showing Core Ohmic T_i vs time and I_p vs time](image)

![Graph showing $T_i(R_{tan})$ vs tangency radius](image)
Helium-II T_i Scales as Predicted by Magnetic Reconnection Theory

- High B_z experiments prevent helical winding reconnection
 - No large scale relaxation \Rightarrow no Tokamak
- Co-injected filament reconnection only:
 \[n_b \propto \frac{I_{inj}}{\sqrt{V_{inj}}} \quad \Delta \phi \approx \frac{B^2}{2e\mu_0 n_b} \propto I_{inj}\sqrt{V_{inj}} \]
- $T_{\text{HeII},\perp} \propto \Delta \phi \propto I_{inj}\sqrt{V_{inj}}$
- $T_{\perp} \gg T_{||}$
- T_i increases with changes in I_{inj} and V_{inj}
- T_{\perp} increases with B_{guide}

![Plasma filaments, $I_{inj} = 0$](image1)
![Merged filaments](image2)

![Ion heating consistent with 2-fluid reconnection theory](image3)
T_i Not Obviously Correlated with n=1 Mode, Correlated with High Frequency Turbulence

- Discharges developed with isolated bursts of $n = 1$ activity, $T_{i,\perp}$ and $T_{i,\parallel}$ measured over burst
- Neither temperature deviates significantly from the average during the burst
- T_i and fluctuation levels above 200 kHz appear correlated
- Continuous ion heating from reconnection between collinear current streams
 - No effect on current drive efficiency
 - Significant ion heating (~ few 0.1 MW)

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
Coinciding Burst Phenomena, Frequency Scaling
Injector Impedance Transients Expected with NIMROD Predicted Reconnection Events

- NIMROD simulation predicts helical stream reconnection
 - Ejection of a helical turn
 - Effect on injector impedance likely

- Reduced model of impedance effect:
 - Inductance: sparse helical inductor
 \[H.W. \text{ Grover, Inductance Calculations} \]
 - Transient drop of 1 turn
 - Drop, rebuild in typical burst time: \[\Delta t \approx 100 \mu s \]

- \[\frac{dL_{\text{helix}}}{dt} \rightarrow \delta V_{\text{inj}} \approx 100 \text{ V} \]
Experimental V_{inj} Transients Consistent with Stream-to-Stream Reconnection

- Bursts time with V_{inj} transients:
 - Coincide with $n=1$ bursts
 - I_p transients as well

- $\delta V_{\text{inj}} \sim 100\text{-}200\text{V}$

- Measured V_{inj} transients consistent with reconnection:
 - Loss of helical stream winding

J.L. Barr, 58th APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th 2016
n=1 Frequency is Alfvénic

- Injector impedance an indicator of e-beam density:
 \[n_b \sim I_{inj}/V_{inj}^{1/2} \rightarrow f_A \sim v_A \sim \frac{1}{\sqrt{n_b}} \sim V_{inj}^{1/4}/I_{inj}^{1/2} \]

- n=1 frequency scales like Alfvén frequency
 - NIMROD: Alfvén waves along injected current streams
Approximate Null Formation Prior to Large Scale Relaxation Confirmed

- Relaxation occurs soon after null formation in initial low-B_z period
 - Observed in experiment and simulation

- Internal B_z measurements confirm predicted poloidal field null formation
n=1 Burst Activity is Consistent with Injected Helical Stream Dynamics

- LFS LHI plasmas exhibit large, Alfvénic bursts of n=1 activity
 - Radially localized near injectors
 - Poloidal structure consistent with unstable current stream in the edge
 - Toroidally asymmetric amplitude indicates toroidally line-tied to injectors
 - V_{inj} transients are consistent with NIMROD predicted detached current ring

- Anomalous ion heating is evidence of reconnection activity
 - Localized to the injection region

- Open question: how much current drive this mechanism leads to?